You are developing an application on Google Cloud that will automatically generate subject labels for users' blog posts. You are under competitive pressure to add this feature quickly, and you have no additional developer resources. No one on your team has experience with machine learning. What should you do?
A
You are designing storage for 20 TB of text files as part of deploying a data pipeline on Google Cloud. Your input data is in CSV format. You want to minimize the cost of querying aggregate values for multiple users who will query the data in Cloud Storage with multiple engines. Which storage service and schema design should you use?
A
You are designing storage for two relational tables that are part of a 10-TB database on Google Cloud. You want to support transactions that scale horizontally.
You also want to optimize data for range queries on non-key columns. What should you do?
C
Your financial services company is moving to cloud technology and wants to store 50 TB of financial time-series data in the cloud. This data is updated frequently and new data will be streaming in all the time. Your company also wants to move their existing Apache Hadoop jobs to the cloud to get insights into this data.
Which product should they use to store the data?
A
Reference:
https://cloud.google.com/bigtable/docs/schema-design-time-series
An organization maintains a Google BigQuery dataset that contains tables with user-level data. They want to expose aggregates of this data to other Google
Cloud projects, while still controlling access to the user-level data. Additionally, they need to minimize their overall storage cost and ensure the analysis cost for other projects is assigned to those projects. What should they do?
A
Reference:
https://cloud.google.com/bigquery/docs/share-access-views
Government regulations in your industry mandate that you have to maintain an auditable record of access to certain types of data. Assuming that all expiring logs will be archived correctly, where should you store data that is subject to that mandate?
B
Your neural network model is taking days to train. You want to increase the training speed. What can you do?
D
Reference:
https://towardsdatascience.com/how-to-increase-the-accuracy-of-a-neural-network-9f5d1c6f407d
You are responsible for writing your company's ETL pipelines to run on an Apache Hadoop cluster. The pipeline will require some checkpointing and splitting pipelines. Which method should you use to write the pipelines?
D
Your company maintains a hybrid deployment with GCP, where analytics are performed on your anonymized customer data. The data are imported to Cloud
Storage from your data center through parallel uploads to a data transfer server running on GCP. Management informs you that the daily transfers take too long and have asked you to fix the problem. You want to maximize transfer speeds. Which action should you take?
C
MJTelco Case Study -
Company Overview -
MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.
Company Background -
Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost.
Their management and operations teams are situated all around the globe creating many-to-many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.
Solution Concept -
MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:
✑ Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
✑ Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.
MJTelco will also use three separate operating environments `" development/test, staging, and production `" to meet the needs of running experiments, deploying new features, and serving production customers.
Business Requirements -
✑ Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community.
✑ Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
✑ Provide reliable and timely access to data for analysis from distributed research workers
✑ Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.
Technical Requirements -
Ensure secure and efficient transport and storage of telemetry data
Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately 100m records/day
Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.
CEO Statement -
Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.
CTO Statement -
Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.
CFO Statement -
The project is too large for us to maintain the hardware and software required for the data and analysis. Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.
MJTelco is building a custom interface to share data. They have these requirements:
1. They need to do aggregations over their petabyte-scale datasets.
2. They need to scan specific time range rows with a very fast response time (milliseconds).
Which combination of Google Cloud Platform products should you recommend?
C