A smart home automation company must efficiently ingest and process messages from various connected devices and sensors. The majority of these messages are comprised of a large number of small files. These messages are ingested using Amazon Kinesis Data Streams and sent to Amazon S3 using a Kinesis data stream consumer application. The Amazon S3 message data is then passed through a processing pipeline built on Amazon EMR running scheduled PySpark jobs.
The data platform team manages data processing and is concerned about the efficiency and cost of downstream data processing. They want to continue to use
PySpark.
Which solution improves the efficiency of the data processing jobs and is well architected?
A
A large financial company is running its ETL process. Part of this process is to move data from Amazon S3 into an Amazon Redshift cluster. The company wants to use the most cost-efficient method to load the dataset into Amazon Redshift.
Which combination of steps would meet these requirements? (Choose two.)
CE
Reference:
https://aws.amazon.com/blogs/big-data/top-8-best-practices-for-high-performance-etl-processing-using-amazon-redshift/
A university intends to use Amazon Kinesis Data Firehose to collect JSON-formatted batches of water quality readings in Amazon S3. The readings are from 50 sensors scattered across a local lake. Students will query the stored data using Amazon Athena to observe changes in a captured metric over time, such as water temperature or acidity. Interest has grown in the study, prompting the university to reconsider how data will be stored.
Which data format and partitioning choices will MOST significantly reduce costs? (Choose two.)
CD
Reference:
https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html
A healthcare company uses AWS data and analytics tools to collect, ingest, and store electronic health record (EHR) data about its patients. The raw EHR data is stored in Amazon S3 in JSON format partitioned by hour, day, and year and is updated every hour. The company wants to maintain the data catalog and metadata in an AWS Glue Data Catalog to be able to access the data using Amazon Athena or Amazon Redshift Spectrum for analytics.
When defining tables in the Data Catalog, the company has the following requirements:
✑ Choose the catalog table name and do not rely on the catalog table naming algorithm.
✑ Keep the table updated with new partitions loaded in the respective S3 bucket prefixes.
Which solution meets these requirements with minimal effort?
B
Reference:
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
A large university has adopted a strategic goal of increasing diversity among enrolled students. The data analytics team is creating a dashboard with data visualizations to enable stakeholders to view historical trends. All access must be authenticated using Microsoft Active Directory. All data in transit and at rest must be encrypted.
Which solution meets these requirements?
D
Reference:
https://docs.aws.amazon.com/quicksight/latest/user/WhatsNew.html
An airline has been collecting metrics on flight activities for analytics. A recently completed proof of concept demonstrates how the company provides insights to data analysts to improve on-time departures. The proof of concept used objects in Amazon S3, which contained the metrics in .csv format, and used Amazon
Athena for querying the data. As the amount of data increases, the data analyst wants to optimize the storage solution to improve query performance.
Which options should the data analyst use to improve performance as the data lake grows? (Choose three.)
ACE
A company uses the Amazon Kinesis SDK to write data to Kinesis Data Streams. Compliance requirements state that the data must be encrypted at rest using a key that can be rotated. The company wants to meet this encryption requirement with minimal coding effort.
How can these requirements be met?
B
Reference:
https://aws.amazon.com/kinesis/data-streams/faqs/
A company wants to enrich application logs in near-real-time and use the enriched dataset for further analysis. The application is running on Amazon EC2 instances across multiple Availability Zones and storing its logs using Amazon CloudWatch Logs. The enrichment source is stored in an Amazon DynamoDB table.
Which solution meets the requirements for the event collection and enrichment?
C
A company uses Amazon Redshift as its data warehouse. A new table has columns that contain sensitive data. The data in the table will eventually be referenced by several existing queries that run many times a day.
A data analyst needs to load 100 billion rows of data into the new table. Before doing so, the data analyst must ensure that only members of the auditing group can read the columns containing sensitive data.
How can the data analyst meet these requirements with the lowest maintenance overhead?
D
A banking company wants to collect large volumes of transactional data using Amazon Kinesis Data Streams for real-time analytics. The company uses
PutRecord to send data to Amazon Kinesis, and has observed network outages during certain times of the day. The company wants to obtain exactly once semantics for the entire processing pipeline.
What should the company do to obtain these characteristics?
A
Reference:
https://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html